







# larvi 2013

6th fish & shellfish larviculture symposium















ghent university, belgium, 2-5 september 2013

## Bacterial community assembly in developing cod larvae (*Gadus morhua*)



Photo: Akvaplan-Niva AS

Ingrid Bakke<sup>1</sup>, Jorunn Skjermo<sup>2</sup>, Tu Anh Vo<sup>3</sup>, Kari Attramadal<sup>3</sup>, Eivind Coward<sup>4</sup>, Thi My Hanh Truong<sup>1</sup> and Olav Vadstein<sup>1</sup>

<sup>1</sup>Norwegian University of Science and Technology (NTNU), Dept. Biotechnology, Trondheim, Norway

<sup>2</sup>SINTEF Fisheries and Aquaculture, Trondheim, Norway

<sup>3</sup>Norwegian University of Science and Technology (NTNU), Centre of Fisheries and Aquaculture, Trondheim, Norway

<sup>4</sup>Norwegian University of Science and Technology (NTNU), Dept. of Cancer Research and Molecular Medicine

E-mail: ingrid.bakke@biotech.ntnu.no



#### Introduction



Photo: LarvalBase

- After hatching and mouth opening, the intestinal system of a fish larva is colonized
- This colonization is important to host health and development
- Conserved responses to colonization of the gut system (mouse and zebra fish):
  - Stimulation of epithelial cell proliferation
  - Promotion of nutrient metabolism
  - Development of the mucosal immune system
- Microbiota associated with cultivated marine fish larvae
  - The larvae shear the rearing water with bacteria
  - The digestive and immune systems are immature
  - Vulnerable to opportunistic bacteria
- Possible to steer the larval microbiota?

#### **Background**

- Need for knowledge:
  - Sources for the larval microbiota?
  - Determinants for the composition of the gastrointestinal microbiota?

Results for cod larvae in PROMICROBE at NTNU/SINTEF in Trondheim:

- Study I: Effect of different live feed diets on larval microbiota
- Study II: Effect of different rearing water systems on larval microbiota
- Study III: A deep sequencing approach to characterize variation in larval microbiota between individuals and with time



Photo: Nofima

#### **Study I** Effect of live feed diet

#### **Experimental design**

- First feeding experiment with cod larvae
- Three different live feed diets from 3 to 22 dph:

Diet **COP**: Copepods cultured on microalgae *R. baltica*Diet **RR**: Rotifers cultured on microalgae *R. baltica*Diet **CR**: Rotifers cultured on Bakers yeast and MarolE

- For each diet: Three tanks, totally 9 tanks (100 l)
- From 18 36 dph: Artemia to all tanks
- Microbial communities investigated for individual larvae, water and live feed samples by PCR/DGGE



Experimental tanks at SINTEF Fisheries and Aquaculture



Live feed is not a major determinant of the microbiota associated with cod larvae (*Gadus morhua*)

Ingrid Bakke,1\* Jorunn Skjermo,3 Tu Anh Vo2 and Olav Vadstein1

## Study I Results

- The live feed diets represented different microbiotas
- Small, but significant differences in larval microbiota between all diets at 8 dph
- No significant differences in larval microbiota between diets at 17 and 32 dph

Non-metric MDS based on Bray-Curtis similarities for cod larval microbiota reared with RR and COP diets







### **Study I** Results

- At 17 and 32 dph:
   No differences in larval microbiota due to rearing with different diets
   Differences in larval microbiota due to rearing in different tanks
- Larval microbiota at 17 and 32 dph remarkable similar despite change of diet
- Larval microbiota generally more similar to water microbiota than to live feed microbiota

RR Tank 3: Larval, water and live feed microbiota



## **Study II** Effect of rearing water

#### **Experimental design**

- First feeding experiment with cod larvae
- Three different rearing water systems until 30 dph:

FTS: Conventional flow-through system

MMS: Microbially matured water (with biofilter) in a flow-through system

**RAS**: Recirculating aquaculture system without disinfection

- For rearing water system: Three tanks, totally 9 tanks (100 l)
- After 30 dph: All tanks received MMS water
- Microbial communities investigated for individual larvae, water and live feed samples by PCR/DGGE



## **Study II** Results

- Significant differences in larval microbiota between different water rearing systems
- Change of identical water (MMS) to all tanks → similar larval microbiota between tanks



## **Study I versus Study II**

#### **Larval microbiota 17 dph:**





## Study III

#### Deep seq. of microbiota associated with developing cod larvae

#### **Experimental design**

- Microbial communities characterized by amplicon pyrosequencing ("deep sequencing")
- Two tanks from Study I (the "diet study"): diets from 3 to 22 dph:
   Tank 1 (T1) Diet COP: Copepods cultured on microalgae R. baltica
   Tank 2 (T2) Diet RR: Rotifers cultured on microalgae R. baltica
- Target sequence: Variable region 4 of the bacterial 16S rRNA gene



Photo: Tora Bardal

## **Study III** Results

• Large number of high quality DNA sequences were obtained Average number of sequences ("after trimming") per sample:

Larva: 6248 ± 1196

Rearing water: 8424 ±514

Live feed:  $8580 \pm 649$ 



## **Study III** Results

Larval microbiota: Temporal trends

- The composition of the larval microbiota changes with age:
  - 8 dph: Pseudomonas, diverse β-proteobacteria, Bacilli is abundant
  - 17 dph and 32 dph: Low diversity, arcobacter (ε-proteobacteria) and γ-proteobacteria
  - 61 dph: High diversity, diverse γ-proteobacteria, high abundance of Rhodobacter



## **Study III** Results

- Similar larval microbiota at 17 and 32 dph
- No differences in larval microbiota between Tank 1 and Tank 2 (COP and RR diets)

#### Pco plot based on Bray-Curtis distances for T1 (COP) and T2 (T2)



#### **Study III** Results Comparison of larval microbiota to water and live feed microbiota

- Larval microbiota highly dissimilar from live feed microbiota
- Larval microbiota highly dissimilar from water microbiota

Higher similarity with increasing age (excretion?)



- Where do the bacteria associated with the 8 dph larvae come from?
  - The most abundant larval OTUs are rare in the water and live feed microbiotas

| OTU classification | % abundance Tank 1 |       |      | % abundance Tank 2 |       |      |
|--------------------|--------------------|-------|------|--------------------|-------|------|
|                    | Larvae             | Water | СОР  | Larvae             | Water | Rot  |
|                    |                    |       | Feed |                    |       | Feed |
| Pseudomonas        | 29.8               | 0.05  | 0.09 | 26.3               | 0.05  | 0.06 |
| Bacillales         | 13.1               | 0.01  | -    | 16.5               | -     | 0.01 |
| Microbacterium     | 3.6                | 0.18  | 0.30 | 6.4                | 0.38  | 40.5 |
| Enterobacteriaceae | 4.2                | -     | 0.01 | 3.9                | -     | -    |

#### **Summary**

- Live feed diet seems to have little influence on the larval microbiota
- Rearing water affects the larval microbiota: Rearing water the major source for larval microbiota?
- Major changes in community structure during larval development
- The early larval microbiota very different from water and live feed microbiota: strong host selection?

#### **Questions**

- Determinants for community structure of the larval microbiota, what cause the changes in community structure?
  - Developmental changes in the digestive system?
  - Developmental changes in the immune system?
- Differences in early larval microbiota when rearing with different water systems:
   Which bacteria make these differences?
   Pyrosequencing of samples from Study II may provide an answer

## Thank you for your attention!



This work was funded by The European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 227197 Promicrobe 'Microbes as positive actors for more sustainable aquaculture'.